Effects of Arbutin on Radiation-Induced Micronuclei in Mice Bone Marrow Cells and Its Definite Dose Reduction Factor
نویسندگان
چکیده
BACKGROUND Interactions of free radicals from ionizing radiation with DNA can induce DNA damage and lead to mutagenesis and carsinogenesis. With respect to radiation damage to human, it is important to protect humans from side effects induced by ionizing radiation. In the present study, the effects of arbutin were investigated by using the micronucleus test for anti-clastogenic activity, to calculate the ratio of polychromatic erythrocyte to polychromatic erythrocyte plus normochromatic erythrocyte (PCE/PCE+NCE) in order to show cell proliferation activity. METHODS Arbutin (50, 100, and 200 mg/kg) was intraperitoneally (ip)administered to NMRI mice two hours before gamma radiation at 2 and 4 gray (Gy). The frequency of micronuclei in 1000 PCEs (MnPCEs) and the ratio of PCE/PCE+NCE were calculated for each sample. Data were statistically evaluated using one-way ANOVA, Tukey HSD test, and t-test. RESULTS The findings indicated that gamma radiation at 2 and 4 Gy extremely increased the frequencies of MnPCE (P<0.001) while reducing PCE/PCE+NCE (P<0.001) compared to the control group. All three doses of arbutin before irradiation significantly reduced the frequencies of MnPCEs and increased the ratio of PCE/PCE+NCE in mice bone marrow compared to the non-drug-treated irradiated control (P<0.001). All three doses of arbutin had no toxicity effect on bone marrow cells. The calculated dose reduction factor (DRF) showed DRF=1.93 for 2Gy and DRF=2.22 for 4 Gy. CONCLUSION Our results demonstrated that arbutin gives significant protection to rat bone against the clastogenic and cytotoxic effects of gamma irradiation.
منابع مشابه
Effects of Arbutin on Radiation-Induced Micronuclei in Mice Bone Marrow Cells and It's Definite Dose Reduction Factor
Background: Interactions of free radicals from ionizing radiation with DNA can induce DNA damage and lead to mutagenesis and carsinogenesis. With respect to radiation damage to human, it is important to protect humans from side effects induced by ionizing radiation.In the present study, the effects of arbutin were investigated by using the micronucleus test for anti-clastogenic activity, to cal...
متن کاملEffects of Arbutin on Radiation-Induced Micronuclei in Mice Bone Marrow Cells and Its Definite Dose Reduction Factor
Introduction: Interactions of free radicals from ionizing radiation with DNA can induce DNA damage and lead to mutagenesis and carsinogenesis. With respect to radiation damage to human, it is important to protect humans from side effects induced by ionizing radiation. In the present study,the effects of arbutin were investigated by using the micronucleus test for anti- clastog...
متن کاملRadioprotective Effects of Sulfur-containing Mineral Water of Ramsar Hot Spring with High Natural Background Radiation on Mouse Bone Marrow Cells
Background: We intend to study the inhibitory effect of sulfur compound in Ramsar hot spring mineral on tumor-genesis ability of high natural background radiation. Objective: The radioprotective effect of sulfur compounds was previously shown on radiation-induced chromosomal aberration, micronuclei in mouse bone marrow cells and human peripheral lymphocyte. Ramsar is known for having the highe...
متن کاملOral Administration of Vitamin C, Cimetidine and Famotidine on Micronuclei Induced by Low Dose Radiation in Mouse Bone Marrow Cells
 Background: In many studies, chemicals and natural materials were tested to reduce the harmful effects of radiation. It is known that Famotidine and vitamin C reduce DNA damage.Objective: The aim of this study was to evaluate the radioprotective effect of vitamin C, Cimetidine and Famotidine on gamma-radiation-induced damage on mouse bone marrow. Methods: Six-to-seven week male NMRI mice (28...
متن کاملPotent radioprotective effect of herbal immunomodulator drug (IMOD) on mouse bone marrow erythrocytes as assayed with the micronucleus test
Background: Although numerous natural or synthetic drugs have been tested for their radioprotective capacity, yet no suitable drug has been introduced for routine clinical use. In this study the radioprotective effect of "a new herbal immunomodulator" commercially known as IMOD, specifically made to decrease the side effects of HIV virus, was investigated on mouse bone marrow cells. M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 41 شماره
صفحات -
تاریخ انتشار 2016